Dear Parents,

In this unit, students continue their study of polynomials by identifying zeros and making connections between zeros of a polynomial and solutions of a polynomial equation. Students will see how the Fundamental Theorem of Algebra can be used to determine the number of solutions of a polynomial equation and will find all the roots of those equations. Students will graph polynomial functions and interpret the key characteristics of the function.

Concepts Students will Use & Understand

- use polynomial identities to solve problems
- use complex numbers in polynomial identities and equations
- understand and apply the rational Root Theorem
- understand and apply the Remainder Theorem
- understand and apply The Fundamental Theorem of Algebra
- understand the relationship between zeros and factors of polynomials
- represent, analyze, and solve polynomial functions algebraically and graphically

Vocabulary

- **End Behavior**: the value of f(x) as x approaches positive and negative infinity
- **Relative Minimum**: a point on the graph where the function is increasing as you move away from the point in the positive and negative direction along the horizontal axis.
- **Relative Maximum**: a point on the graph where the function is decreasing as you move away from the point in the positive and negative direction along the horizontal axis.
- **Fundamental Theorem of Algebra**: every non-zero single-variable polynomial with complex coefficients has exactly as many complex roots as its degree, if each root is counted up to its multiplicity.
- **Multiplicity**: the number of times a root occurs at a given point of a polynomial equation.
- **Pascal’s Triangle**: an arrangement of the values of \(\binom{n}{r} \) in a triangular pattern where each row corresponds to a value of \(n \)
- **Rational Root Theorem**: a theorem that provides a complete list of all possible rational roots of a polynomial equation. It states that every rational zero of the polynomial equation \(f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_2 x^2 + a_1 x + a_0 \), where all coefficients are integers, has the following form: \(\frac{P}{q} \), \(P \) is a factor of the constant term \(a_0 \) and \(q \) is a factor of the leading coefficient \(a_n \)
- **Remainder Theorem**: states that the remainder of a polynomial f(x) divided by a linear divisor (x – c) is equal to f(c)
Sample Problems

1. The height of an arrow shot by a 6 foot tall person is given by the function equation where \(h \) is the height and \(t \) is the time. At what time would the arrow be able to hit a target 10 feet in the air?

 The arrow could hit a 10 foot target in 2 sec. or in 2 2/3 sec.

2. Draw a rough sketch of the graph of \(y = -x^2 + 4x - 3 \)

3. A soccer ball is kicked from the ground. The height of the ball is modeled by the equation \(h(t) = -4.9t^2 + 19.6t \)

 Height is in meters. Time is in seconds. How long is the ball in the air?

 4 seconds

4. Describe the key features of the following polynomial function:

 \[f(x) = x^4 + x^2 - 20 \]

 Rational roots:
 \[x = -2, 2 \]

 Irrational roots:
 None

 Non-real roots:
 \[x = -\sqrt{5}i, \sqrt{5}i \]

 Relative maximum points:
 None

 Relative minimum points:
 \((0, -20) \)

 End behavior:
 \[x \to -\infty, f(x) \to \infty; \ x \to \infty, f(x) \to \infty \]