Geometry Unit 3: Right Triangle Trigonometry

Dear Parents,

Below is information regarding Unit 3, Right Triangle Trigonometry.

In this unit students will:

- explore the relationships that exist between sides and angles of right triangles
- build upon their previous knowledge of similar triangles and of the Pythagorean Theorem to determine the side length ratios in special right triangles
- understand the conceptual basis for the functional ratios sine and cosine
- explore how the values of these trigonometric functions relate in complementary angles
- to use trigonometric ratios to solve problems
- develop the skills and understanding needed for the study of many technical areas
- build a strong foundation for future study of trigonometric functions of real numbers

Textbook Connections

Holt McDougal Textbook: Analytic Geometry, Unit 2, Modules 9-10

Online Access: http://my.hrw.com/

Right Triangle Trigonometry Vocabulary Terms/Properties

Complementary Angles: two angles whose sum is 90°

$$\frac{\text{sine of } \theta}{\text{length of opposite side}} = \frac{\text{length of opposite side}}{\text{length of the hypotenuse}}$$

$$\frac{\text{cosine of } \theta}{\text{cosine of } \theta} = \cos(\theta) = \frac{\text{length of adjacent side}}{\text{length of the hypotenuse}}$$

tangent of
$$\theta$$
 = tan(θ) = $\frac{\text{length of opposite side}}{\text{length of adjacent side}}$

Properties, theorems & corollaries:

- 1) 30°-60°-90° triangles pattern: hypotenuse, shorter leg, longer leg= 2a, a, $a\sqrt{3}$
- 2) 45°-45°-90° triangles pattern: leg lengths equal & hypotenuse is $\sqrt{2}$ times the length of a leg
- 3) Pair of complementary angles in a rt. triangle, the sine of one angle is the cosine of its complement.
- 4) Pair of complementary angles in a rt. triangle, the tangent of one angle is the reciprocal of the tangent of its complement.

For examples & help with vocabulary, visit:

http://intermath.coe.uga.edu/

Web Resources

- $\bullet \underline{ \text{https://mathbitsnotebook.com/Geometry/RightTriangles/RT306090.html}} \text{ special right triangles} \\$
- https://www.cliffsnotes.com/study-guides/geometry/right-triangles/special-right-triangles-special-right-triangles special right triangles
- http://www.beaconlearningcenter.com/documents/1688_01.pdf -special right triangles
- http://www.purplemath.com/modules/basirati.htm -trigonometry ratios
- http://www.themathlab.com/toolbox/geometry%20stuff/trigratios.htm -trig. table
- http://hotmath.com/hotmath_help/topics/trigonometric-ratios.html -trig ratio short notes

Practice

1. What are the measurements of x, y, q and z?

2. A man is walking his dog on level ground in a straight line with the dog's favorite tree. The angle of elevation from the man's present position to the top of a nearby telephone pole is 30°. The angle of elevation from the tree to the top of the telephone pole is 45°. If the telephone pole is 40 feet tall, how far is the man with the dog from the tree? Express answer to the nearest tenth of a foot.

- 3. Find the exact value of: $\cos 60^{\circ} + \sin 30^{\circ} \tan 45^{\circ}$.
- 4. Find to the nearest degree, the measure of an acute angle formed by the x-axis and the line containing the points (4,3) and (8,9).
- 5. In $\triangle ABC$, m<B = 80°, m<C = 34° and a = 16. Find the length of b to the nearest tenth

Answers:

- 1. $x=12\sqrt{3}$; y=12; q=6; z=18
- 2. 29.3 ft
- 3. 0
- 4. 56°
- 5. ≈17.2